Print Page | Close Window

Gate Syllabus AGRICULTURAL ENGINEERING

Printed From: One Stop GATE
Category: GATE AT A GLANCE
Forum Name: Syllabus
Forum Discription: Keep track of everchanging GATE Syllabus. Inform the same to others too.
URL: http://forum.onestopgate.com/forum_posts.asp?TID=905
Printed Date: 27Feb2025 at 3:41pm


Topic: Gate Syllabus AGRICULTURAL ENGINEERING
Posted By: annu
Subject: Gate Syllabus AGRICULTURAL ENGINEERING
Date Posted: 03Apr2007 at 10:35pm
ENGINEERING MATHEMATICS:

Linear Algebra: Matrices and Determinants, Systems of linear equations, Eigen values and eigen vectors.

Calculus: Limit, continuity and differentiability; Partial Derivatives; Maxima and minima; Sequences and series; Test for convergence; Fourier series.

Vector Calculus: Gradient; Divergence and Curl; Line; surface and volume integrals; Stokes, Gauss and Green's theorems.

Diferential Equations: Linear and non-linear first order ODEs; Higher order linear ODEs with constant coefficients; Cauchy's and Euler's equations; Laplace transforms; PDEs - Laplace, heat and wave equations.

Probability and Statistics: Mean, median, mode and standard deviation; Random variables; Poisson, normal and binomial distributions; Correlation and regression analysis.

Numerical Methods: Solutions of linear and non-linear algebraic equations; integration of trapezoidal and Simpson's rule; single and multi-step methods for differential equations.


FARM MACHINERY AND POWER:

Sources of power on the farm-human, animal, mechanical, electrical, wind, solar and biomass; design and selection of machine elements - gears, pulleys, chains and sprockets and belts; overload safety devices used in farm machinery; measurement of force, torque, speed, displacement and acceleration on machine elements.

Soil tillage; forces acting on a tillage tool; hitch systems and hitching of tillage implements; functional requirements, principles of working, construction and operation of manual, animal and power operated equipment for tillage. sowing, planting, fertilizer application, inter-cultivation, spraying, mowing, chaff cutting, harvesting, threshing and transport; testing of agricultural machinery and equipment; calculation of performance parameters -field capacity, efficiency, application rate and losses; cost analysis of implements and tractors.

Thermodynamic principles of I.C. engines; I.C. engine cycles; engine components; fuels and combustion; lubricants and their properties; I.C. engine systems - fuel, cooling, lubrication, ignition, electrical, intake and exhaust; selection, operation, maintenance and repair of I.C. engines; power efficiencies and measurement; calculation of power, torque, fuel consumption, heat load and power losses.

Tractors and power tillers - type, selection, maintenance and repair; tractor clutches and brakes; power transmission systems - gear trains, differential, final drives and power take-off; mechanics of tractor chassis; traction theory; three point hitches- free link and restrained link operations; mechanical steering and hydraulic control systems used in tractors; human engineering and safety in tractor design; tractor tests and performance.


SOIL AND WATER CONSERVATION ENGINEERING:

Ideal and real fluids, properties of fluids; hydrostatic pressure and its measurement; hydrostatic forces on plane and curved surface; continuity equation; Bernoulli's theorem; laminar and turbulent flow in pipes, Darcy-Weisbach and Hazen-Williams equations, Moody's diagram; flow through orifices and notches; flow in open channels.

Engineering properties of soils, fundamental definitions and relationships; index properties of soils; permeability and seepage analysis; shear strength, Mohr's circle of stresses; active and passive earth pressures; stability of slopes.

Hydrological cycle; precipitation measurement, analysis of precipitation data; abstraction from precipitation; runoff; hydrograph analysis, unit hydrograph theory and application; stream flow measurement; flood routing, hydrological reservoir and channel routing.

Mechanics of soil erosion, factors affecting erosion; soil loss estimation; biological and engineering measures to control erosion, terraces and bunds; vegetative waterways; gully control structures, drop, drop inlet and chute spillways; farm ponds; earthen dams; principles of watershed management.

Water requirement of crops; consumptive use and evapo-transpiration; irrigation scheduling; irrigation efficiencies; design of prismatic and silt loaded channels; methods of irrigation water application; design and evaluation of irrigation methods; drainage coefficient; surface and subsurface drainage systems; leaching requirement and salinity control; irrigation and drainage water quality; classification of pumps; pump characteristics; pump selection; types of aquifer; evaluation of aquifer properties; well hydraulics; ground water recharge.

AGRICULTURAL PROCESSING AND FOOD ENGINEERING:

Steady state heat transfer in conduction, convection and radiation; transient heat transfer in simple geometry; condensation and boiling heat transfer; working principles of heat exchangers; diffusive and convective mass transfer; simultaneous heat and mass transfer in agricultural processing operations.

Material and energy balances in food processing systems; water activity, sorption and desorption isotherms; centrifugal separation of solids, liquids and gases; kinetics of microbial death - pasteurisation and sterilization of liquid foods; preservation of food by cooling and freezing; psychrometry - properties of air-vapour mixture; concentration and dehydration of liquid foods - evaporators, tray, drum and spray dryers.

Mechanics and energy requirement in size reduction of granular solids; particle size analysis for comminuted solids; size separation by screening; fluidisation of granular solids; cleaning and grading efficiency and effectiveness of grain cleaners; conditioning and hydrothermal treatments for grains; dehydration of food grains; processes and machines for processing of cereals, pulses and oilseeds; design considerations for grain silos.



Print Page | Close Window