Active TopicsActive Topics  Display List of Forum MembersMemberlist  CalendarCalendar  Search The ForumSearch  HelpHelp
  RegisterRegister  LoginLogin
 One Stop GATE ForumGATE Previous Years Test Papers - Discuss HereECE Papers
Message Icon Topic: Gate sylabus Post Reply Post New Topic
Author Message
varsha
Newbie
Newbie


Joined: 05Apr2007
Online Status: Offline
Posts: 9
Quote varsha Replybullet Topic: Gate sylabus
    Posted: 05Apr2007 at 10:06pm
GATE SYALLUBUS FOR ELECTRONICS AND COMMUNICATION ENGINEERING

 NETWORK: Network graphs:
matrices associated with graphs; incidence, fundamental cut set and fundamental circuit matrices. Solution methodsl; nodal and mesh analysis. Network theorems; superposition, Thevenin and Nortan's, maximum power transfer, wye-delta transformation, steady state sinusoidal analysis using phasors, fourier series, linear constant coefficient differential and difference equations; time domain analysis of simple RLC circuits. laplace and Z transforms: frequency domain analysis of RLC circuits, convolution,2-port network parameters, driving point and transfer functions, state equation for networks.

 ANALOG CIRCUITS:
characteristics and equivalent circuits(large and small singnal) of diodes,BJT,JFETs and MOSFET simple diode circuits: clipping, clamping, rectifier, biasing and bias stability of transistior and FET amplifiers. Amplifiers: single and multi-stage, differential, operational, feedback and power. Analysis of amplifers; frequency response of amplifiers. Simple op-amp circuits. Filters. Sinusoidal oscillators; criterion for oscillation; single-transistor and op-amp configurations. Function generators and wave-shaping circuits, Power supplies.

 DIGITAL CIRCUITS:
Boolean algebra; minimization of boolean functions; logic gates; digital IC families( DTL,TTL,ECL,MOS,CMOS). Combinational circuits: airthmetic circuits, code converters, multiplexers and decoders. Sequential circuits: latches and flip-flops, counters and shift-registers. Comparators, timers, multivibrators. Sample and hold circuits, ADCs and DACs. Semiconductor memories. Microprocessor (8085): architecture, programming, memory and I/O interfacing.

 CONTROL SYSTEMS:
Basic control system components; block diagrammatic descripption,reduction of block diagrams,properties of systems: linearity,time-invariance,stability,causality.Open loop and closed loop (feedback) systems.Special properties of linear time- invariance(LTI) systems-transfer function, impulse responce,poles,zeros,their significance, and stability analysis of these systems. Signal flow graphs and their use in determining transfer functions of systems; transient and steaty state analysis of LTI system and frequency responce. Tools and techniques for LTI control system analysis: Root, loci, Routh_Hurwitz criterion, Bode and Nyquist plots; Control system compensators: elements of lead and lag compensations, elements ofPropotional-integral.
-Derivative(PID) control. State variable representation and solution of state equation for LTI systems.

 COMMUNICATION SYSTEMS:
Fourier analysis of signals - amplitude, phase and power spectrum, auto-correlation and cross-correlation and their Fourier transforms. Signal transmission through linear time-invariant(LTI) systems,impulse responce and frequency responce,group delay phase delay. Analog modulation systems-amplitude and angle modulation and demodulation systems, spectral analysis of these operations, superheterodyne receivers, elements of hardwares realizations of analog communications systems. Basic sampling theorems. Pulse code modulation(PCM), differential pulse code modulation(DPCM), delta modulation(DM). Digital modulation schemes: amplitude, phase and frequency shift keying schemes(ASK,PSK,FSK). Multiplexing - time division and frequency division. Additive Gaussian noise; characterization using correlation, probability density function(PDF),power spectral density(PSD). Signal- to-noise rasio(SNR) calculations for amplitude modulation(AM) and frequency modulation(FM) for low noise conditions.

 ELECTROMAGNETICS:
Elements of vector calculus: gradient, dicergence and curl; Gauss and strokes theorems, maxwells equation: differential and integral forms. Wave equation. Poynting vector. Plane wavwes: propagation through various media; reflection and refraction; phase and group velocity; skin depth Transmission lines: Characteristic impedence; impedence transformation; smith chart; impedence matching pulse excitation. Wave guides: modes in rectangular waveguides; boundary conditions; cutt-off frequencies; dipersion relations. Antennas; Dipole antennas; antenna arrays; radiation pattern; reciprocity theorem; antenna gain.

click here for more details:
http://onestopgate.com/gate-syllabus/electronics-telecommnication.asp



Post Resume: Click here to Upload your Resume & Apply for Jobs

IP IP Logged
ari_2129
Newbie
Newbie
Avatar

Joined: 19Jul2007
Location: India
Online Status: Offline
Posts: 1
Quote ari_2129 Replybullet Posted: 16Aug2007 at 10:16am
Gate sylabus of ME
A.das
IP IP Logged
Post Reply Post New Topic
Printable version Printable version

Forum Jump
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot delete your posts in this forum
You cannot edit your posts in this forum
You cannot create polls in this forum
You cannot vote in polls in this forum

GET LATEST FRESHERS JOBS IN YOUR MAIL





This page was generated in 0.234 seconds.
Vyom is an ISO 9001:2000 Certified Organization

© Vyom Technosoft Pvt. Ltd. All Rights Reserved.

Job Interview Questions | Girls Magazine | DLL, OCX File Errors | Freshers Jobs | Placement Papers | More Papers